Интерфейс: новые направления в проектировании компьютерных систем.

4.2.3.3. Интерфейс для Хола: вариант 2. ГИП (GUI, graphical user interface).
4.2.3.3. Интерфейс для Хола: вариант 2. ГИП (GUI, graphical user interface). 4.2.3. Примеры расчетов по модели GOMS. 4.2. Модель скорости печати GOMS. 4. Квантификация. Интерфейс: новые направления в проектировании компьютерных систем.

Рис. 4.3. ГИП для задачи Хола

В интерфейсе, показанном на рис. 4.3, используется наглядное отображение термометров. Хол может поднять или опустить указатель на каждом термометре методом перетаскивания с помощью ГУВ. Хол определяет, какой ему необходимо сделать пересчет, перемещая стрелку указателя либо по шкале Цельсия, либо по шкале Фаренгейта. Холу не требуется вводить символы посредством клавиатуры – он просто выбирает значение температуры на одном из термометров. При перемещении указателя на одном термометре указатель на другом перемещается на соответствующее значение. Точность устанавливается с помощью регуляторов масштабирования шкал. Также возможно изменить текущий диапазон значений. Изменение шкалы или диапазона на одном термометре автоматически приводит к соответствующему изменению на другом. Точное числовое значение отображается на перемещаемой стрелке. Температура показывается как в числовом виде так и с помощью уровня градусника, поэтому Хол может, на свое усмотрение, пользоваться либо графическим вариантом представления данных, либо символьным. Сервис «Автомед» позволяет установить диапазоны термометров с центром в районе 37 градусов шкалы Цельсия и 98.6 градусов Фаренгейта на случай, если кто-то из сотрудников работает со значениями температуры тела человека. Эта опция служит для экономии времени.

С помощью нажатия кнопок «Расширить шкалу» (Expand Scales) и «Сжать шкалу» (Compress Scales) можно уменьшить или увеличить цену деления шкал в 10 раз. Для перехода к значению, которое в данный момент не видно на экране, Хол расширяет шкалу, затем прокручивает до нужного места на шкале, устанавливает стрелку на необходимое температурное значение и потом сжимает шкалу до получения требуемой точности, при необходимости подстраивая стрелку указателя.

Провести анализ этого графического интерфейса с помощью модели скорости печати GOMS довольно сложно, поскольку способ, которым Хол может его использовать, зависит от того, где в данный момент установлена стрелка указателя, какой необходим диапазон температур и какая требуется точность. Рассмотрим сначала простой случай, при котором диапазон температурных шкал и точность перевода уже находятся в желаемом положении. Анализ позволит определить минимальное время, необходимое для использования этого интерфейса.

• Запишем, какие жесты использует Хол, когда перемещает руку к ГУВ, щелкает по кнопке и удерживает ее, указывая на стрелку одного из термометров:

H P K

• Продолжим записывать те жесты, которые использует Хол для перемещения стрелки к необходимому температурному значению и отпускает кнопку ГУВ

H P K P K

• Поставим операторы M в соответствии с правилом 0:

H M P M K M K

• Удалим два оператора M в соответствии с правилом 1:

H M P K K

Когнитивные единицы, разделители последовательностей и т. д. здесь не используются, поэтому правила 2–5 не применяем. Складывая значения операторов, получаем общее время:

H M P K K

0.4 + 1.35 + 1.1 + 0.2 + 0.2 = 3.25 с

Результат вычисления относится к удачному случаю, когда исходный термометр уже предустановлен на требуемый диапазон и точность. Теперь рассмотрим случай, при котором Хол расширяет шкалу, чтобы увидеть необходимое температурное значение, изменяет диапазон, сжимает шкалу, чтобы получить требуемую точность, и затем перемещает стрелку указателя. Далее я привожу общую запись метода, который использует Хол, без промежуточных шагов. (Я исхожу из того, что Хол является опытным пользователям и не прокручивает шкалу туда и обратно, чтобы найти на ней нужный участок.) Холу приходится несколько раз пользоваться стрелками для прокрутки температурной шкалы. На каждую операцию прокручивания экрана может потребовать нескольких жестов. Кроме того, требуется время на то, чтобы отобразить изменения на экране, связанные с его прокруткой. Чтобы оценить время прокручивания, я построил такой интерфейс и измерил эти значения. Все они были равны 3 с и более. Обозначая время прокручивания шкал через S, запишем последовательность жестов, которые применяет Хол.

H P K S K P K S K P K S K P K K

В соответствии с правилами расставляем операторы M:

H + 3(M + P + K + S + K) + M + P + K + K

0.4 + 3*(1.35 + 0.2 + 3.0 + 0.2) + 1.35 + 0.4 + 0.2 + 0.2 = 16.8 с

За исключением редких случаев, когда шкалы уже с самого начала установлены правильно, идеальному пользователю понадобится более 16 с. на то, чтобы выполнить перевод из одной шкалы в другую, тогда как реальный, т. е. не идеальный пользователь, может сбивать шкалы и стрелки указателей, и поэтому ему понадобится даже больше времени.

4.3. Измерение эффективности интерфейса.

Каждый инструмент несет с собой тот дух, в котором он был создан. Вернер Карл Гейзенберг.

Мы рассмотрели два интерфейса: в одном из которых требуется около 5 с. на выполнение задачи, а в другом – более 15 с. Отсюда ясно, какой из интерфейсов лучше удовлетворяет поставленным условиям. Следующий вопрос – это определить, насколько быстро работает тот интерфейс, который отвечает поставленным требованиям.

Если имеется модель интерфейса, то с помощью GOMS и его расширений можно определить время, необходимое пользователю на выполнение любой, четко сформулированной задачи, для которой данный интерфейс предусмотрен. Однако модели анализа не могут дать ответ на вопрос о том, насколько быстро должен работать интерфейс. Чтобы ответить на него, мы можем воспользоваться мерой, применяемой в теории информации. Далее мы будем рассматривать термин информация в техническом смысле, т. е. как квантификацию некоторого объема данных, передаваемых с помощью средства коммуникации, как, например, при разговоре двух людей по телефону, или если человек подает некоторый сигнал машине, например с помощью нажатия кнопки ГУВ, когда курсор находится в определенной области экрана. Перед тем как углубиться в детали техники измерения того, какой объем информации нужен для выполнения поставленной задачи, обоснуем необходимость такого измерения.

Чтобы сделать правильную оценку времени, необходимого на выполнение задачи с помощью самого быстрого интерфейса, прежде всего следует определить минимальное количество информации, которое пользователь должен ввести, чтобы выполнить задачу. Это минимальное количество не зависит от модели интерфейса. Если методы работы, используемые в предполагаемом интерфейсе, требуют введения такого количества информации, которое превышает минимальное, это означает, что пользователь делает лишнюю работу, и поэтому интерфейс можно усовершенствовать. С другой стороны, если от пользователя требуется ввести именно то количество информации, которое необходимо для выполнения задачи, то для этой задачи интерфейс нельзя сделать более производительным путем изменения количества информации. В этом случае пути улучшения интерфейса (а также много путей для ухудшения) все же остаются, но по крайней мере данная цель повышения производительности будет уже достигнута.

Информационно-теоретическая производительность определяется так же, как понятие производительности определяется в термодинамике – отношением мощности на выходе к мощности на входе процесса. Если в течение какого-то периода времени электрогенератор, работающий от двигателя производительностью в 1000 ватт, производит 820 ватт, то он имеет производительность 820/100=0.82. Производительность также часто обозначается через проценты. В этом случае производительность электрогенератора будет составлять 82 %. Идеальный генератор (который не может существовать с точки зрения второго закона термодинамики) должен иметь производительность 100 %.

Информационная производительность интерфейса E определяется как отношение минимального количества информации, необходимого для выполнения задачи, к количеству информации, которое должен ввести пользователь. Так же как и в отношении физической производительности, параметр E может изменяться в пределах от 0 до 1. Если никакой работы для выполнения задачи не требуется или работа просто не производится, то производительность составляет 1. (Это формальное положение вводится для того, чтобы избежать деления на 0, как в случае ответа на выводимое прозрачное сообщение об ошибке (см. раздел 5.5).)

Производительность E может равняться и 0 в случаях, когда пользователь должен ввести информацию, которая совершенно бесполезна (рис. 4.4). Следует отметить, что в интерфейсах можно встретить немало деталей, которые имеют сомнительную ценность из-за параметра E=0. Примером такого бесполезного элемента может быть диалоговое окно, в котором есть только одна-единственная возможность для действия пользователя, например кнопка OK. (В JavaScript есть даже специальная команда Alert, предназначенная только для того, чтобы делать такие ненужные диалоговые окна. Разработчики языка JavaScript были достаточно разумны, чтобы убрать из него команду goto и сделать программирование на этом языке структурным, но они упустили из виду аспект интерфейса.)

Вернер Карл Гейзенберг. 4.3. Измерение эффективности интерфейса. 4. Квантификация. Интерфейс: новые направления в проектировании компьютерных систем.

Рис. 4.4. Диалоговое окно с информационной теоретической эффективностью 0

В параметре E учитывается только информация, необходимая для задачи, и информация, вводимая пользователем. Два или более методов действия могут иметь одинаковую производительность E, но иметь разное время выполнения. Возможно даже, что один метод имеет более высокий показатель E, но действует медленнее, чем другой метод, – например M K M K и M K K K. В этом примере при использовании первого метода должно быть введено только два символа. При использовании второго метода требуется ввести три символа, но времени на все действие тратится меньше. Трудно привести другие примеры из обычной жизни, в которых происходит аналогичная перестановка скорости и информационной производительности.[22] Как правило, чем более производительным является интерфейс, тем более продуктивным и более человекоориентированным он является.

Информация измеряется в битах. Один бит, который представляет собой один из двух альтернативных вариантов (таких как 0 или 1, да или нет), является единицей информации.[23] Например, чтобы выбрать один из каких-либо четырех объектов, потребуется 2 бита информации. Если объекты обозначить как A, B, C и D, первый бит информации определит выбор между A и B или C и D. Когда первый выбор сделан (например, C и D), второй бит определит выбор между следующими двумя элементами (либо C, либо D). Двух двоичных выборов, или двух битов, достаточно для выбора одного элемента из четырех. Чтобы сделать выбор из группы восьми элементов, потребуется 3 бита. Из шестнадцати элементов – 4 бита, и т. д. В общем случае при количестве n равновероятных вариантов суммарное количество передаваемой информации определяется как степень 2, равная n:

\log_2 n

Количество информации для каждого варианта определяется как

(1/n) \log_2 n (1)

Если вероятности для каждой альтернативы не являются равными и i – я альтернатива имеет вероятность p(i), то информация, передаваемая этой альтернативой, определяется как

p(i) \log_2(1/p(i)) (2)

Количество информации является суммой (по всем вариантам) выражения (2), которое при равновероятных вариантах сводится к выражению (1). Отсюда следует, что информационное содержание интерфейса, в котором возможно сделать только нажатие единственной клавиши (а ненажатие клавиши не допускается), составляет 0 бит:

1 \log_2(1) = 0 (3)

Однако может показаться, что нажатие единственной клавиши способно, например, вызвать подрыв динамита для разрушения здания. Таким образом, передает ли это нажатие какую-нибудь информацию? На самом деле нет, потому что ненажатие кнопки не было предусмотрено как альтернатива – интерфейс допускает «только нажатие единственной клавиши». Если же нажатие клавиши не производится в течение 5-минутного периода, когда подрыв возможен, то здание не будет разрушено, и поэтому нажатие или ненажатие передает до 1 бита информации, так как в этом случае имеется альтернатива из двух вариантов. Из выражения (2) следует, что в вычислениях используется вероятность (p) того, что здание будет разрушено. Таким образом, вероятность того, что оно не будет разрушено, составляет 1-p. С помощью выражения (2) мы можем вычислить информационное содержание данного интерфейса:

p \log_2(1/p) + (1-p) \log_2(1/(1-p)) (4)

При p=S результат выражения (4) составит:

S*1 + S*1 = S + S = 1

Значение выражения (4) будет меньше 1, если p<> S. В частности при p = 0 или p = 1 оно составит 0, как это видно из выражения (3).

Этот пример показывает важный момент, который заключается в том, что мы можем оценить объем информации, содержащейся в сообщении, только в контексте всего набора возможных сообщений. Чтобы подсчитать количество информации, передаваемой некоторым полученным сообщением, необходимо знать в частности вероятность, с которой это сообщение может быть отправлено. Количество информации в любом сообщении не зависит от других сообщений, которые были в прошлом или могут быть в будущем, не связано со временем или продолжительностью и не зависит от каких-либо иных событий, так же как результат подбрасывания симметричной монеты не зависит от результата предыдущих подбрасываний или от времени дня, когда это подбрасывание производится.

Кроме того, важно учитывать, что:

«нельзя путать понятие информации с понятием смысла…информация является мерой свободы выбора сообщения… Следует отметить, что при наличии только двух возможных сообщений утверждать, что какое-то сообщение передает какой-то объем [1 бит] информации, неправильно. Понятие информации не применимо к отдельным сообщениям (в отличие от понятия смыла), но применимо к ситуации в целом; при этом единица информации показывает, что в данной ситуации имеется некоторый объем свободы в выборе сообщения, который удобно обозначать как стандартный или единичный объем информации» (Shannon и Weaver, 1963, с. 9).

Однако действия, которые совершает пользователь при выполнении задачи, можно с большей точностью смоделировать в виде процесса Маркова, в котором вероятность последующих действий зависит от уже совершенных пользователем действий. Тем не менее, для данного рассмотрения достаточно использовать упомянутые вероятности отдельных, единичных событий, при этом будем исходить из того, что все сообщения являются независимыми друг от друга и равновероятными.

Также можно вычислить количество информации, которое передается с помощью устройств, отличающихся от клавиатуры. Если экран дисплея разделен на две области – со словом «Да» в одной области и словом «Нет» – в другой, то один клик, совершенный в одной из областей, будет передавать 1 бит информации. Если имеется n равновероятных объектов, то нажатием на один из них сообщается \log_2 n бит информации. Если объекты имеют разные размеры, то количество информации, сообщаемой каждым из них, не изменяется, но увеличивается время перемещения ГУВ к более мелким объектам (далее мы покажем способ вычисления этого времени). Если объекты имеют разные вероятности, формула остается аналогичной той, которая была дана для случая ввода с клавиатуры разновероятных данных. Различие состоит только в том, что для нажатия клавиши может потребоваться 0.2 с. тогда как для нажатия кнопки, изображенной на экране, в среднем может потребоваться около 1.3 с (без учета времени перемещения руки пользователя с клавиатуры на ГУВ).

В случае голосового ввода информации его информационное содержание можно вычислить, если рассматривать речь как последовательность вводимых символов, а не как непрерывный поток определенного диапазона и продолжительности.

Данный подход к теории информации и ее связи с разработкой интерфейсов является упрощенным. Но даже в такой упрощенной форме, которую мы также использовали при рассмотрении модели GOMS, теория информации может дать нам общий критерий оценки качества интерфейса.

4.3.1. Производительность интерфейса для Хола.

Аккуратный подсчет есть путь к знаниям всех существующих вещей и тайных секретов. Папирусы Рхинда, 1650 г. до н. э.

Аккуратный подсчет есть путь к знаниям всех существующих вещей и тайных секретов.

Полезно подробно рассмотреть пример вычисления среднего количества информации, требуемого для некоего интерфейса. Для этого я снова использую пример интерфейса для перевода температур из одной шкалы в другую. В соответствии с условиями требуется, чтобы количество символов, вводимых в температурный преобразователь, равнялось в среднем 4. Кроме того, по условиям задачи десятичная точка используется однократно в 90 % вводимых данных, а в 10 % – вообще не встречается; знак минус появляется один раз в 25 % данных и совсем не встречается в остальных 75 % данных. Из соображений простоты, а также потому, что не требуется ответ с точностью до 1 %, я буду исходить из того, что все остальные цифры встречаются с одинаковой частотой, и не буду учитывать те 10 % данных, которые не содержат десятичной точки.

Требуется определить множество возможных вариантов ввода и их вероятности. Возможны 5 вариантов (d означает цифру):

1. -.dd

2. -d.d

3. .ddd

4. d.dd

5. dd.d

Первые два варианта встречаются в 12.5 % случаев, и количество каждого из них составляет 100. Каждый из последних трех вариантов встречается в 25 % случаев, и количество каждого из них составляет почти 1000.[24] Вероятность каждого из первых двух вариантов ввода составляет (0.125/100)=0.00125. Вероятность любого из последних трех вариантов ввода составляет (0.75/3000)=0.00025. Сумма вероятностей, как это и должно быть, составляет 1.

Количество информации (в битах), передаваемое каждым вариантом, определяется выражением (2):[25]

p(i) \log_2(1/p(i))

Значение этого выражения составляет приблизительно 0.012 для отрицательных значений ввода и 0.003 – для положительных. 200*0.00674+3000*0.003 дает в сумме 11.4 бита для каждого варианта ввода.

Важно учесть вероятности вариантов. Если использовать простой подход, в котором все 12 символов (минус, десятичная точка и 10 цифр) принять как равновероятные, то вероятность каждого символа составит 1/12, а количество информации, содержащейся в 4-значном варианте ввода, составит приблизительно

4 \log_2(12)≈14 бит

В теории информации есть теорема, в которой утверждается, что максимум информации передается при условии, что все символы равновероятны. Поэтому если принять все варианты как равновероятные, то общее значение будет равно количеству информации в каждом отдельном варианте или превышать его. Очевидно, что такое допущение позволяет упростить вычисление информационного содержания. Если же результирующее значение приближенного вычисления меньше количества информации, которое пользователь должен ввести в интерфейс, то проводить еще более точные вычисления уже нет необходимости.

Мы только что выяснили, что каждый раз, когда Холу требуется провести преобразование температурных значений, он должен ввести в среднем около 11 бит информации. Мы можем разделить это количество на то количество информации, которое требуется ввести в интерфейс, что мы сейчас и сделаем. В результате мы получим производительность (эффективность) данного интерфейса.

Другим упрощением, позволяющим провести быстрый анализ интерфейса, является вычисление различных жестов на основе количества информации, передаваемого одним нажатием клавиши или одной операцией ГУВ. При передаче информации нажатием клавиши ее количество зависит от общего количества клавиш и относительной частоты использования каждой из них. Таким образом, нажатия клавиши могут использоваться как приблизительная мера информации. Если на клавиатуре имеется 128 клавиш, и каждая из них используется с одинаковой частотой, то нажатие любой из них будет передавать 7 бит информации. В действительности частота использования клавиш субщественно различается. Например, пробел или буква е используются чаще, чем й или \, поэтому в большинстве приложений на каждое нажатие клавиши приходится в среднем около 5 битов. По условиям нашей задачи среднее число символов вводимых температурных значений не должно превышать 4.

Для данного анализа удобнее использовать более простую меру, чем теоретическая информационная производительность. Символьная эффективность часто имеет такую же практическую ценность, что и информационная производительность. Она определяется как минимальное количество символов, необходимое для выполнения задачи, отнесенное к количеству символов, которое в данном интерфейсе требуется ввести пользователем.

Если в нашем интерфейсе потребуется вводить в среднем 4 символа, то символьная эффективность такого интерфейса составит 100 %. При добавлении еще одной клавиши, обозначающей шкалу перевода температурного значения, а также еще одной для разделения, средняя длина ввода возрастет до 6 символов, а символьная эффективность снизится до 67 %. Если в качестве устройства ввода Хол будет использовать числовую клавиатуру, состоящую из 16 клавиш, то каждой отдельной клавишей будет передаваться 4 бита информации, и поэтому производительность интерфейса возрастет. (Однако по условиям задачи такой возможности не предусмотрено.)

Поскольку любая задача в соответствии с анализом GOMS требует как минимум одного ментального оператора, наиболее производительный интерфейс с использованием клавиатуры для перевода температурных значений из одной шкалы в другую будет теоретически иметь следующее среднее время использования:

M + K + K + K + K = 2.15 с

Таким образом, он будет значительно быстрее, чем любой из двух уже рассмотренных вариантов. Однако введение 4 символов с помощью стандартной клавиатуры дает, по крайней мере, 20 бит информации, тогда как требуется только 10. Следовательно, теоретическая информационная производительность составляет 55 %, а значит, существует возможность улучшения. Как мы уже видели, использование стандартной числовой клавиатуры вместо полной клавиатуры снижает объем информации, вводимой на каждые 4 символа, до 16 бит, что повышает производительность до 60 %. Желаемая числовая клавиатура, содержащая только цифры, знак минус и десятичную точку, позволит немного повысить производительность – до 70 %. Дальнейшее повышение производительности возможно через использование особых кодировок обозначений температуры и изобретение новых устройств ввода, но здесь возникают трудности, связанные с обучением и лишними расходами, поэтому остановимся на варианте с 70 % теоретической информационной производительности. Независимо от того, могут ли теоретические границы быть достигнуты на практике или нет, они дают нам направление в разработке интерфейса.

4.3.2. Другие решения интерфейса для Хола.

В разделе 4.3.1 мы приостановили дальнейшие попытки улучшения интерфейса, достигнув 70 % теоретической информационной производительности. Данная производительность определена для пока еще неизвестного, теоретического интерфейса, в котором каким-то образом можно получить 100 % эффективность использования клавиш. Давайте посмотрим, насколько мы можем приблизиться к этому идеалу с помощью стандартной клавиатуры и ГУВ.

Рассмотрим интерфейс, в котором используется клавиатура со всеми символами. В таком интерфейсе на экране появляется следующее сообщение:

Для перевода температуры из одной шкалы в другую укажите нужную шкалу с помощью символа C (шкала Цельсия) или F (шкала Фаренгейта). Введите числовое значение температуры, затем нажмите клавишу Enter. Результат преобразования будет отображен на экране.

GOMS-анализ показывает, что пользователь должен сделать 6 нажатий клавиш. По правилам расстановки операторов M получаем. следующую запись:

M K K K K K M K

Среднее время составит 3.9 с.

Мы можем уменьшить это время, если сами символы C и F будем использовать в качестве разделителей. Рассмотрим интерфейс, в котором появляется следующая инструкция:

Для перевода температуры из одной шкалы в другую введите числовое значение температуры и следом поставьте символ C, если оно в шкале Цельсия, или F, если оно в шкале Фаренгейта. Результат преобразования будет отображен на экране.

В данном примере нажимать на клавишу «Enter» не требуется. Некоторые примитивные средства разработки интерфейсов требуют, чтобы пользователь обязательно использовал клавишу «Enter», и поэтому в них невозможно использовать символы C и F в качестве разделителей. Такие инструменты не подходят для разработки человекоориентированных интерфейсов.

GOMS-анализ показывает, что для интерфейса с символами C и F в качестве разделителей запись будет следующей:

M K K K K M K

Среднее время составит 3.7 с. Если бы мы не знали, что теоретически минимальное время составляет 2.15 с, то это решение могло бы показаться удачным. Оно является значительно более эффективным, чем ранее рассмотренные, поэтому мы могли бы на нем остановиться. Однако теоретический минимум подстегивает нас к поиску еще более быстрой интерфейсной модели. Рассмотрим интерфейс, изображенный на рис. 4.5. Такой интерфейс можно назвать разветвленным. В нем один ввод дает в результате два вывода.

4.3.2. Другие решения интерфейса для Хола. 4.3. Измерение эффективности интерфейса. 4. Квантификация. Интерфейс: новые направления в проектировании компьютерных систем.

Рис. 4.5. Интерфейс, в котором не используется разделитель. Более эффективным является вариант, в котором выполняется посимвольная обработка вводимых данных и одновременное преобразование в обеих шкалах

В разветвленном интерфейсе нет необходимости в разделителе. Кроме того, пользователю не нужно указывать, какое именно преобразование требуется провести. GOMS-анализ показывает, что для 4 символов, которые в среднем будут вводиться, запись будет следующей:

M K K K K

В разветвленном интерфейсе достигается минимальное время 2.15 с, и его символьная эффективность составляет 100 %.

Если, как в нашем примере, в месте вывода происходит изменение результата в тот момент, когда символы вводятся, это колебание цифр не отвлекает пользователя, потому что в локусе его внимания находится именно ввод данных. Непрерывно изменяемые значения на выводе могут быть даже полезными – после нескольких применений пользователь будет замечать эти колебания только краем глаза, что будет служить подсказкой о том, что система отвечает на вводимые данные. Если используется посимвольный режим работы интерфейса, то для большей эффективности такая система должна реагировать довольно быстро. В частности скорость реакции не должна быть меньше скорости ввода. Такая проблема может возникать только при сетевом использовании интерфейса.

Хотя это и не входит в условие задачи, но может возникнуть вопрос о том, как происходит очистка полей в преобразователе для выполнения следующего преобразования. Добавляет ли операция очистки еще одно нажатие клавиши? Необязательно. Например, мы можем разработать интерфейс таким образом, что каждый раз, когда оператор возвращается к своему основному занятию или переходит к другой задаче, значения, указанные в преобразователе, могут автоматически затеняться, а сам температурный преобразователь становиться неактивным; причем в это время все значения могут оставаться в своих полях так, что при необходимости их можно было бы опять увидеть, но уже при следующем вводе все они будут стерты.

Разветвленный интерфейс не обязательно является самым лучшим из тех, что уже были рассмотрены – или из тех, что возможны, – только потому, что он имеет оптимальную скорость работы и является весьма эффективным. Кроме скорости есть и другие параметры, которые также являются важными: частота появления ошибок; время, необходимое для изучения интерфейса; возможность длительного запоминания способа использования интерфейса. Особенно следует обратить внимание на частоту появления ошибок в разветвленном интерфейсе, поскольку есть вероятность того, что Хол может прочитать результат не из того поля. Это важно особенно потому, что когда он услышал, например слово Цельсий, ему необходимо прочитать значение из поля шкалы Фаренгейта. Тем не менее, разветвленный температурный преобразователь определенно входит в небольшое число тех интерфейсов, которые можно рассматривать как рабочие варианты для программы преобразования температурных значений из одной шкалы в другую. Другие рассмотренные нами примеры, которые могли бы показаться удачными, если бы мы не проводили с ними GOMS-анализ, на самом деле не являются таковыми.

Используемая как в простом анализе временных затрат на нажатия клавиш, так и в полном информационно-теоретическом исследовании, квантификация теоретического интерфейса с минимальным временем использования или с минимальным количеством используемых символов, или с минимальным количеством используемой информации может быть полезна с точки зрения разработки интерфейса. Без количественных ориентиров мы можем только догадываться о том, насколько хорошо мы разработали интерфейс и есть ли возможность его улучшения.