Радиоэлектроника — с компьютером и паяльником.

Ab ovo (лат. «с яйца»).

Среди различных диапазонов радиоволн, освоенных человеком, есть и весьма экзотические по их применению и проявлению.

Как отмечается в заграничных хрониках, в 1946 году пятидесятидвухлетний американец Перси Л. Спенсер, работник одной из компаний, производящих электронные лампы, проводил ординарные опыты с новой генераторной лампой — магнетроном.

Однажды, в перерыве между опытами, он полез в карман спецовки, чтобы достать плитку шоколада. Однако вместо твердой плитки в его руках оказалось какое-то липкое месиво. Спенсер очень удивился: «Почему это шоколад растаял, хотя он сам не почувствовал никакого постороннего тепла?».

Интуитивно он заподозрил, что в этом виноват магнетрон. Тогда Спенсер, решив проверить свою догадку, рассыпал около магнетрона кукурузные зерна и включил аппарат. Через мгновенье вся лаборатория была усеяна разлетевшимся во все стороны попкорном. Из оставшихся съестных припасов у него оставалось одно яйцо. Возбужденный всем увиденным, Спенсер положил его в пластмассовую корзинку для бумаг и поставил ее перед магнетроном. Взрыв яйца был финальным салютом этой серии опытов.

Хотя Спенсер почти не учился в школе, так как воспитывался без родителей, он с детства слыл сметливым парнем. Благодаря природному уму и трудолюбию он выбился в люди, и еще в 1925 году стал контролером завода этой компании.

Размышляя над произошедшим, Спенсер пришел к выводу, что причиной увиденных явлений служит нагрев продуктов за счет поглощения волн, излучаемых магнетроном. Теперь-то любая домохозяйка знает, что перед тем как варить яйца в СВЧ-печке, их надо проколоть, а еще лучше сразу приготовить оригинальную яичницу — в стеклянном стакане или вазочке.

В нашем дорогом отечестве в эти времена также проводились самые разнообразные эксперименты в области применения электромагнитных волн СВЧ-диапазона. В основном, как и до войны, так и после нее, они были связаны с разработкой радиолокационной техники (занимались этим, конечно, и американцы, и англичане). Правда, физики занимались и другими проблемами: мазерами (а потом и лазерами), радиоастрономией и т. п. Академик П. Л. Капица (позже ставший лауреатом Нобелевской премии), отстраненный тогда от руководства созданного им института «Физпроблем» вследствие отказа заниматься атомным проектом, курируемого Берией, организовал научную лабораторию в избушке, рядом со своей дачей. Физики тут же окрестили ее «Избой Физпроблем». Одна из проблем, которой Петр Леонидович начал заниматься еще перед войной, касалась физики шаровых молний. Другой наш академик — Я. И. Френкель выдвинул «химическую» теорию шаровой молнии, но П. Л. Капица подверг ее критике, так как в этой теории не сходился энергетический баланс.

Гипотеза Капицы заключалась в том, что во время свечения к шаровой молнии непрерывно подводится извне энергия радиоизлучений в метровом и дециметровом диапазонах, производимых обычными (линейными) молниями. Сгусток плазмы возникает, по его гипотезе, в месте сложения этих волн и ведет себя как сложный открытый объемный резонатор.

Эти исследования привели его к созданию нового научного направления: «Электроника больших мощностей». П. Л. Капица полагал, что именно на этом пути лежит решение задач электроэнергетики по канализации и передаче электроэнергии на большие расстояния. В частности, был создан специальный генератор, названный «ниготроном», позволявший излучать до 8 кВт в дециметровом диапазоне спектра электромагнитных волн. В первых опытах излучение направлялось в открытое окно. Затем, по словам Петра Леонидовича, «мы поставили на пути излучения яйцо, которое мгновенно сварилось вкрутую, а присутствующий при этом академик Фок моментально съел его». Для следующего опыта был взят тонкостенный кварцевый шар диаметром 10 см, наполненный гелием при давлении 10 см ртутного столба. При облучении яркая вспышка внутри шара продолжалась несколько секунд, после чего кварцевая оболочка, несмотря на высокую температуру плавления, расплавилась…