Как отопить загородный дом.

Чугунные радиаторы нового поколения.

Традиционно чугунные радиаторы используются как проверенные и долговечные источники тепла, отличающиеся высокой надежностью, практичностью и минимальными требованиями к теплоносителю. Чугунные радиаторы Könner – высококачественные секционные отопительные приборы, отвечающие самым современным эстетическим требованиям и обладающие высоким качеством по доступной цене. К их преимуществам следует отнести:

♦ долговечность (срок службы – до 50 лет);

♦ устойчивость к коррозии;

♦ высокое рабочее давление, что определяет их пригодность к использованию в высотных зданиях и сооружениях;

♦ невосприимчивость к плохому качеству теплоносителя;

♦ возможность использования в системах с естественной циркуляцией (благодаря большому диаметру проходных отверстий и малому гидравлическому сопротивлению);

♦ большое сечение внутренних плоскостей, предотвращающее засоры;

♦ высокое качество исполнения и современный дизайн.

Радиаторы «Модерн» и «Хит» внешне напоминают отопительные приборы из алюминия и, имея глубину 100 мм, могут устанавливаться под самыми узкими подоконниками. Появившись на рынке 5 лет назад, эти модели сразу завоевали доверие потребителей привлекательным внешним видом, отличными эксплуатационными характеристиками и стабильным качеством.

Как отопить загородный дом

Радиатор Könner Modern.

Особое внимание проектировщиков привлекает модель «Олимпик», созданная для оснащения олимпийских объектов в Пекине: гладкая, идеально выкрашенная поверхность, мягко закругленные углы придают радиатору эстетичный внешний вид, а обтекаемая форма гарантирует чистоту и отсутствие пыли. Любители ретро-стиля по достоинству оценят модель «Легенда», выкрашенную в благородный бронзовый или глубокий черный цвет и украшенную цветочным орнаментом.

Обладая всеми достоинствами классических чугунных радиаторов марки Könner, этот отопительный прибор выполнен в стиле начала XX века и является полноценным декоративным элементом помещения.

Könner – надежное тепло!

Дистрибьюторский Центр «ТАЙПИТ» выступает как оптовый гипермаркет радиаторов и дает возможность выбрать и приобрести любые радиаторы в любом количестве. Хорошо развитая сеть складов и филиалов по России гарантирует быструю доставку – продукция есть в наличии на складах в Москве, Санкт-Петербурге, Ростове-на-Дону, Новосибирске и в Екатеринбурге.

Эти изделия производятся в Китае из высококачественного чугуна на оснащенном по последнему слову техники заводе отопительного оборудования. Качество радиаторов подтверждено сертификатом СанРОС и международным сертификатом ISO 9001–2000.

Покупатель имеет возможность приобретения любого количества секций с различным диаметром входной трубы и разными межосевыми расстояниями.

Алюминиевые радиаторы высокой прочности.

Под торговой маркой Könner ДЦ «ТАЙПИТ» также предлагает алюминиевые радиаторы отопления, разработанные с учетом российских условий:

♦ экструзионные, глубиной 70 и 100 мм;

♦ полученные методом литья под давлением (марки Lux), глубиной 85 см.

Алюминиевые экструзионные радиаторы Könner производятся с межосевым расстоянием 500, 350 или 200 мм. Горизонтальные водопроводящие каналы приборов отливаются (получаются верхние и нижние головы радиаторов), а затем соединятся с профилем при помощи клеевого состава и лазерной сварки. Изготовленный по данной технологии цельный и герметичный радиатор выдерживает очень высокое давление. Это достигается за счет более круглого сечения коллектора и двойного соединения головы и вертикального профиля.

Биметаллические радиаторы.

Модель Könner Bimetal продолжает линейку качественных отопительных приборов, разработанных специально для эксплуатации в российских условиях. Эти биметаллические радиаторы имеют внутренний коллектор, полностью изготовленный из высоколегированной стали, что обеспечивает способность прибора выдерживать давление на разрыв до 60 атм, а также невосприимчивость к качеству теплоносителя вне зависимости от уровня рН-фактора, так как алюминий с теплоносителем не контактирует.

Для получения высококачественного покрытия Könner Bimetal покрываются в статическом поле эпоксидной эмалью. Обработанный по современным методикам радиатор красив и легко вписывается в любой интерьер.

Каждый прибор проходит испытание на заводе-изготовителе, чем гарантируется его высокая надежность. Все радиаторы Könner застрахованы в РОСНО на 1 млн евро.

Ооо «Дц Тайпит»: Москва: (495) 510-2770. Санкт-Петербург: (812) 326-1090. Ростов-На-Дону: (863) 292-5303. Новосибирск: (383) 325-0425. Екатеринбург: (343) 295-7380.

Циркуляционные насосы для систем отопления и горячего водоснабжения WILO.

Как отопить загородный дом

Весна – прекрасная пора; конец холодным пасмурным дням, все вокруг оживает, цветет и радуется, предвкушая приход долгожданного лета. Вовсе не хочется думать о том, что вскоре вновь наступит осень с холодными дождями и северными ветрами. Но именно сейчас лучше всего неторопливо начать готовиться к холодам и задуматься об отоплении собственного дома, тщательно и правильно выбрать оборудование и фирму поставщика.

Немецкая промышленная группа WILO AG, имеющая 135-летний опыт производства оборудования для систем отопления зданий и сооружений, производит широкую гамму циркуляционных насосов как для небольших зданий (коттеджей), так и для больших зданий гражданского и промышленного назначения.

Развитие мирового насосостроения неразрывно связано с именем WILO: первый циркуляционный насос (ускоритель циркуляции жидкости) был изобретен талантливым немецким инженером Вильгельмом Оплендером (WILhelm Oplender) в 1928 году, из первых букв имени которого сложилось название фирмы и торговая марка WILO.

В наше время циркуляционные насосы используются практически во всех системах отопления и горячего водоснабжения для создания или усиления циркуляции. Он и улучшают процесс теплоотдачи, увеличивают КПД установки и эффективность теплопередачи, транспортируют по трубопроводам с малым диаметром большие объемы воды, что позволяет уменьшить объем воды в системе и быстро реагировать на колебания окружающей температуры. Все это позволяет существенно уменьшить капитальные затраты, монтажные расходы, снижает расход топлива и выбросы CO2 в атмосферу, позволяет регулировать систему и равномерно распределять тепло.

В системах отопления, горячего водоснабжения, кондиционирования, вентиляции коттеджа, небольшого и среднего дома, в тепловых пунктах лучше установить насос с «мокрым» ротором, который монтируется прямо на трубе, практически бесшумен, не требует технического обслуживания, потребляет минимальное количество электроэнергии, имеет маленькие габаритные размеры и вес.

Таблица ниже поможет подобрать циркуляционный насос WILO в зависимости от тепловой мощности системы отопления или общей площади отапливаемого помещения.

Первое число в обозначении насоса указывает условный проход в мм (25 или 30); второе число (в знаменателе) – максимальный напор в метрах; для насосов RL – в дециметрах.

Таблица. Выбор циркуляционных насосов WILO в зависимости от тепловой мощности системы отопления или общей площади отапливаемого помещения.

Как отопить загородный дом

Δ t = 10 °С – для низкотемпературных систем, например 55 °С в подающем трубопроводе и 45 °С в обратном или для систем теплых полов;

Δ t = 20 °С – для стандартных высокотемпературных отопительных систем: 90 °С в подающем и 70 °С в обратном трубопроводе.

Насосы серий Stratos ECO и Stratos.

Модели этих серий – высокоэффективные насосы с электронным регулированием частоты вращения. Данные насосы пришли на смену насосам с ручным переключением частоты вращения, и в Европе даже существует закон, по которому на всех новых объектах должны применяться электронные насосы. Все насосы Stratos ECO и Stratos оснащаются частотным преобразователем.

Как отопить загородный дом

Stratos ECO.

Изменение частоты вращения при изменении нагрузки на систему отопления позволяет поддерживать напор либо на постоянном значении Н (м) – режим работы при постоянном давлении (ΔP = const), либо на пропорциональной линии 1/2 H – H (м) – режим работы при переменном давлении (ΔP = var). Системе отопления с таким насосом уже не требуются регуляторы перепада давления и автоматика управления насосом.

Насосы не требуют дополнительной защиты и имеют систему разблокировки вала. Пусковой момент насоса Stratos ECO в 3 раза выше, чем у стандартных нерегулируемых насосов, что позволяет без труда запустить насос после длительного простоя. Режим работы «день/ночь» автоматически переключает насос на минимальные обороты для обеспечения циркуляции при низкой нагрузке, т. е. в уже прогретом помещении. Насос имеет более широкое рабочее поле и возможность самостоятельно изменять мощность в зависимости от потребностей системы отопления, расходуя минимальное количество энергии и снижая гидравлический шум в трубопроводе. По сравнению со стандартными нерегулируемыми циркуляционными насосами для бытового назначения, насос Stratos использует в четыре раза меньше энергии. Согласно введенной в 2005 г. классификации насосов по энергосберегающим показателям, насосы этой серии относятся к наивысшему классу энергоэффективности – A.

Насосы серий RS, TOP-RL, TOP-S (25,30).

Это резьбовые циркуляционные насосы малой мощности с ручным 3-ступенчатым переключателем частоты вращения и 2-полюсным двигателем. Любая из трех скоростей выбирается с помощью переключателя с учетом потребности в тепловой энергии для каждого конкретного режима работы. Насосы RS имеют следующие особенности: электроподключение возможно как с левой, так и с правой стороны клеммной коробки благодаря её специальному исполнению; корпус двигателя можно монтировать в любых положениях относительно улитки насоса, главное требование: вал всегда должен располагаться горизонтально; диапазон рабочих температур перекачиваемой жидкости от –10 до +110 °С для RS. Для удобства монтажа на патрубках насоса имеются отливы под гаечный ключ. В насосах используются графитовые подшипники скольжения и вал из нержавеющей стали, что обеспечивает устойчивость к сухому ходу. Все насосы устойчивы к токам блокировки, не требуется дополнительная защита и техническое обслуживание. Новая конструкция рабочего колеса и электродвигателя существенно увеличивает КПД и снижает потребление электроэнергии. Уровень шума насосов не превышает 34 дБ (A) и определить на слух, работает насос или нет, практически невозможно. Производятся и RSD – сдвоенные насосы с одной гидравлической частью с лепестковым клапаном и двумя электромоторами. Они предназначены для монтажа в системах с повышенными требованиями к надежности оборудования. Возможны следующие режимы работы: со 100 % резервированием и режим пиковой нагрузки при наличии соответствующей автоматики.

Как отопить загородный дом

TOP-S.

Как отопить загородный дом

STAR-RS.

Насосы серии TOP – циркуляционные насосы, у которых дизайн, рабочее колесо и гидравлическая часть разработаны конструкторами с помощью компьютерного моделирования для улучшения их технических параметров и повышения надежности. Эти насосы имеют повышенный КПД по сравнению с серией RS. Насосы данной серии оснащаются: 3-ступенчатым ручным переключателем частоты вращения и защитным теплоизоляционным кожухом. Уровень шума таких насосов не превышает 45 дБ (A), то есть работают они практически бесшумно. Серия ТОР обладает следующими преимуществами и особенностями:

♦ оптимальная конструкция гидравлической части, рабочего колеса и электродвигателя;

♦ гильза ротора из нержавеющей стали для предотвращения коррозии и заклинивания вала;

♦ устойчив к токам блокировки или снабжен серийной защитой электродвигателя;

♦ встроенная светодиодная индикация режима работы и неисправности;

♦ контроль и индикация направления вращения для трехфазных насосов;

♦ напор и производительность выше, чем у насосов серий RS, а температурный диапазон перекачиваемой жидкости расширен: от –20 до +130 °С (кратковременно до +140 °С);

♦ клеммная коробка позволяет подсоединять дополнительные модули для расширения функциональных возможностей и индикации рабочих параметров насоса.

Для систем горячего водоснабжения используются насосы серии Z, TOP-Z и Stratos-Z.

Отличительной особенностью этих насосов является то, что гидравлическая часть их изготовлена в зависимости от типа либо из латуни (Z 15), либо из бронзы (Z 20, Z 25, TOP-Z, Stratos-Z), либо из чугуна со специальным антикоррозийным покрытием (TOP-Z), а рабочее колесо выполнено из специального пищевого пластика.

Все насосы WILO ГВС имеют гигиенический сертификат Министерства Здравоохранения Российской Федерации.

Все циркуляционные насосы WILO имеют сертификаты соответствия ГОСТ Р.

Возможности применения насосов WILO для систем отопления не исчерпываются примерами, приведенными в этой статье. Кроме того, производственная программа WILO регулярно пополняется новыми продуктами.

Ооо «Вило Рус». Тел. +7 (495) 781-0690. www.wilo.ru.

Как выбрать циркуляционный насос: вопросы и ответы.

Устройство систем отопления – актуальная проблема для владельцев загородных домов. Для поддержания нормальной температуры в помещении требуются не только отопительное оборудование и приборы, но и циркуляционные насосы. Чтобы облегчить их выбор специалисты компании Grundfos решили ответить на наиболее часто задаваемые вопросы.

Как отопить загородный дом

Циркуляционный насос Alpha2-25-40.

Существуют ли системы отопления без циркуляционных насосов?

Да, существуют. Это так называемые открытые системы. Принцип их работы основан на явлении конвекции. Однако такой тип системы эффективен лишь для небольших (до 100 м2) домов.

Что такое циркуляционный насос?

Это небольшой агрегат, который устанавливается непосредственно в трубопровод и обеспечивает перемещение теплоносителя по трубопроводу.

Зачем нужен циркуляционный насос?

ЦН перемещает жидкость по системе с заданной скоростью, быстро и эффективно доставляя тепло во все уголки здания.

Как правильно выбрать циркуляционный насос?

Прежде всего необходимо знать, сколько тепла понадобится для отопления дома. Это достаточно сложный расчет, который включает в себя множество параметров и осуществляется специалистами. При реконструкции уже существующей системы предпочтительнее воспользоваться насосом с электронной регулировкой, например, Grundfos серии Alpha2. Такие ЦН самостоятельно адаптируются к изменению расхода в системе, практически бесшумны и очень экономичны.

Не будет ли насос создавать шум в трубах?

Шум в трубопроводах вызывается обычно либо погрешностями в гидравлике системы, либо наличием воздуха в ней. Чтобы избежать проблем, рекомендуется устанавливать гидрокомпенсатор (мембранный бак). Он позволяет избежать кавитационных явлений, которые вредны для насоса и создают шум в трубах.

Воздух, попавший в систему, тоже будет вызывать гул. Поэтому необходимо перед запуском отопления правильно удалить воздух из трубопроводов.

Системой отопления летом не пользуются. Не возникнут ли проблемы с запуском ЦН?

Современные циркуляционные насосы могут без вреда для себя отключаться на длительное время. Регулируемые насосы, такие как Grundfos Alpha2, обладают достаточным моментом вращения, чтобы провернуть даже «заросший» отложениями вал.

Имеют ли значение материалы, из которых выполнен ЦН?

Да, безусловно. Современные модели ЦН имеют вал и подшипники, сделанные из керамики. Это не только продлевает срок службы, но и делает их практически бесшумными в эксплуатации.

Не слишком ли много энергии потребляют ЦН, ведь они включены постоянно?

Стоит заметить, что эти небольшие устройства очень экономичны и потребляют энергии не больше, чем, скажем, небольшая электрическая лампочка. Этот насос соответствует классу «А» энергоэффективности. Максимальная потребляемая мощность составляет 22 Вт для модели Alpha2-25-40, а годовое потребление электроэнергии в доме площадью до 200 м2 – всего 90 кВт·ч.

Как часто ЦН требуют замены?

Срок службы качественного циркуляционного насоса составляет не менее 10 лет.

Правда ли, что существуют ЦН для горячей воды?

Да, для повышения комфорта и экономии энергии в систему ГВС индивидуального дома можно установить специальный циркуляционный насос, например Grundfos Comfort.

Продавец сказал, что насос для повышения давления в сети водоснабжения подходит для систем отопления. Это так?

Нет. Насосы для повышения давления в системе водоснабжения не могут использоваться как циркуляционные, несмотря на внешнее сходство!

Чем отличаются ЦН для системы «теплый пол»?

При устройстве «теплых полов» все петли должны быть сбалансированы на одинаковый перепад давления, при этом потери давления в самой длинной петле (не более 120 м) определяют необходимый напор насоса. В связи с переменным потребным расходом в системе рекомендуется использовать регулируемые ЦН – Alpha2 или UPE.

Мы постарались ответить на большинство вопросов, которые возникают у покупателей циркуляционных насосов. Это облегчит их эксплуатацию и позволит сделать выбор наилучшего варианта среди всего многообразия сегодняшнего рынка.

Приложение 1.

Спецификация оборудования котельной (дом площадью 300 м2) на котле АСV.

Как отопить загородный дом

Спецификация системы отопления.

Как отопить загородный дом

Примечание. Расчет – ориентировочный, окончательная стоимость комплекта уточняется по реальным условиям проекта.

Приложение 2.

Спецификация оборудования для отопления дома (площадь – 300 м2) на котле CHAPPEE EDENA PROGRESS1101/32 SEB. (www.maestro.ru).

Как отопить загородный дом

Спецификация системы отопления.

Как отопить загородный дом

Примечание. Расчет – ориентировочный, окончательная стоимость комплекта уточняется по реальным условиям проекта.

Оборудование подобрано с учетом наличия одного независимого контура, работающего в автоматическом погодозависимом режиме.

Спецификация оборудования для отопления дома (площадь – 300 м2) на котле DE DIETRICH DTG 137 ECO.NOX 36 KW.

Как отопить загородный домКак отопить загородный дом

Спецификация системы отопления для дома площадью 250–300 м2.www.rusklimat.ru.

Как отопить загородный домКак отопить загородный домКак отопить загородный дом

Приложение 3. Пример системы водяного отопления индивидуального жилого дома.

Два жилых этажа (рис. П.1, П.2) и отапливаемая часть цоколя (рис. П.3) имеют общую площадь 216 м2. (На рис.: 1, 2, 3 – вертикальные строительные оси; А, Б, В, Г – гаризонтальные; 20, 32, 40 – диаметры труб; 1000/500К22 – указание типа отопительного прибора: длина 1000 мм, высота 500 мм, тип-К – с боковой подводкой трубопроводов, тип 22 – две пластины, два типа оребрения.) Нагрузка на систему отопления – 22,4 кВт, на систему горячего водоснабжения – 28,6 кВт. Топливо – магистральный газ.

Система отопления выполнена по двухтрубной схеме с двумя главными стояками (Гл. Ст. 1 и Гл. Ст. 2). Дополнительно применена система подогрева пола в помещениях первого этажа. «Теплые полы» подключены к отдельному стояку (Ст. п/п). В качестве отопительных приборов применены панельные радиаторы Henrad, каждый из которых оборудован ручным терморегулировочным вентилем. Материал труб – армированный полипропилен.

Источником автономного теплоснабжения выбран двухконтурный стальной водогрейный котел ACV, оснащенный вентиляторной газовой горелкой. И контур отопления, и контур «теплых полов» оснащены своим циркуляционным насосом. Управление системой отопления осуществляется с использованием комнатного термостата с недельным программированием. Термостат управляет электроприводом специального 3-ходового смесителя, который подключает контур отопления к котлу или временно отключает от него, прекращая тем самым подогрев теплоносителя.

В системе отопления реализован температурный режим 90/70 °С, в системе «теплого пола» – 50/40 °С. На системе теплого пола установлен специальный смеситель с электроприводом, позволяющий подавать в этот контур теплоноситель с меньшей, чем в отопительные приборы, температурой.

Как отопить загородный домКак отопить загородный домКак отопить загородный дом

Приложение 4. Расчет напольного отопления.

Теплотехнические расчеты.

В ходе теплотехнического расчета теплого пола обычно решается одна из следующих задач:

А) определение требуемой средней температуры теплоносителя по известному удельному тепловому потоку, полученному в результате расчета теплопотребности помещения;

Б) определение удельного теплового потока от теплого пола при известной средней температуре теплоносителя.

Как правило, при полном напольном отоплении (без использования радиаторного отопления), определяется помещение с наибольшими удельными теплопотерями. Для этого помещения производится расчет по схеме «а», то есть определяется требуемая средняя температура теплоносителя. Для остальных помещений, эта температура принимается в качестве заданной величины, и дальнейшие расчеты ведутся по схеме «в».

В обоих случаях определяющим критерием расчета является температура поверхности пола, которая не должна превышать нормативных величин (см. таблицу 1).

Следует отметить, что по западным нормативам температура поверхности пола допускается более высокой, чем по российским нормам, что следует учитывать при использовании импортных расчетных программ.

Методик теплотехнического расчета теплых полов существует несколько. В каждой из методик заложен ряд допущений и ограничений, которые также не следует забывать при проектировании.

Таблица 1. Допустимые температуры поверхности пола.

Как отопить загородный дом

Метод коэффициентов.

Метод основан на применении поправочных коэффициентов к известным, экспериментально установленным, удельным тепловым потокам от эталонного теплого пола при различных температурных напорах (см. таблицу 2).

q = Δt1 Kтр Kпп Kb Kc KD,

Где: q – удельный тепловой поток, Вт/м2;

Δt – логарифмическая разность между температурой теплоносителя и температурой воздуха в помещении, °С;

Ктр – приведенный коэффициент теплопередачи стенки трубы, Вт/м2К;

Кпп – коэффициент, зависящий от термического сопротивления покрытия пола;

Кb – коэффициент шага укладки труб;

Кс – коэффициент толщины стяжки над трубой;

KD – коэффициент, учитывающий наружный диаметр труб.

Логарифмическая разность температур:

Как отопить загородный дом

Где: t1 и t2 – температуры соответственно прямого и обратного теплоносителя, °С;

tв – расчетная температура воздуха в помещении, °С.

Таблица 2. Характеристики эталонного теплого пола.

Как отопить загородный дом

Коэффициент теплопередачи стенки трубы:

Как отопить загородный дом

Где: K0 – коэффициент теплопередачи эталонной трубы – 6,7 Вт/м2 К;

b – шаг труб, м;

δ – толщина стенки трубы, м;

δ0 – толщина стенки эталонной трубы, – 0,002 м;

D – наружный диаметр трубы, м;

D0 – наружный диаметр эталонной трубы, – 0,016 м;

λст – коэффициент теплопроводности стенки трубы, Вт/ м К;

λстО – коэффициент теплопроводности стенки эталонной трубы, – 0,35 Вт/ м К.

Коэффициент влияния термического сопротивления покрытия пола:

Как отопить загородный дом

Где: αn – коэффициент теплоотдачи поверхности пола, – 10,8 Вт/м2 К;

δc0 – толщина эталонной стяжки, – 0,045 м;

λс – коэффициент теплопроводности стяжки, Вт/ м К;

λc0 – коэффициент теплопроводности эталонной стяжки, – 1,00 Вт/м К;

Rпп – термические сопротивления слоев покрытия пола (выше стяжки), м2 К/Вт.

Коэффициент шага укладки труб:

Как отопить загородный дом

Коэффициент толщины стяжки определяется по формуле:

Как отопить загородный дом,

Где: δс – толщина стяжки над трубой, м;

С – коэффициент, определяемый по таблице 3.

Таблица 3. Значение коэффициента С.

Как отопить загородный дом

Коэффициент, учитывающий наружный диаметр труб:

KD = CD250D−5,

Где: D – наружный диаметр трубы, м;

CD – коэффициент, принимаемый по таблице 4.

К недостаткам этой методики можно отнести следующие принятые в ней допущения:

• коэффициент теплоотдачи поверхности пола принят постоянным (10,8 Вт/м2 К). В действительности, этот коэффициент является функцией от целого ряда величин (температуры поверхности пола, температур поверхностей окружающих конструкций и скорости движения воздуха у поверхности пола);

• метод коэффициентов может применяться при шаге труб не более 375 мм, толщине стяжки не более 45 мм, термических сопротивлениях покрытия пола не более 0,15 м2 К/Вт, наружных диаметрах труб не более 20 мм.

Таблица 4. Значения коэффициентов CD.

Как отопить загородный дом

Аналитический метод.

В основе метода заложена формула определения удельного теплового потока, как функции от температуры поверхности пола (DIN 4725), которая выведена на основе решения частной задачи Форхгеймера (тепловой поток от линейного источника в полуограниченном массиве):

qв = 8,92(tntв)1,1,

Где: qв – удельный тепловой поток по направлению «вверх», Вт/м2;

tn – температура поверхности пола,°С;

tв – температура воздуха в помещении,°С.

Если условно вырезать из теплого пола полосу шириной равной шагу труб (рисунок 1), то можно предположить, что тепловой поток одной трубы распределяется только внутри этой зоны.

Теплопередачу через боковые грани зоны можно принять нулевой, учитывая, что количество тепла, отданное в соседнюю зону, равно количеству тепла, поступившего из соседней зоны.

Можно также допустить, что отношение поверхности трубы, передающей тепло по направлению вверх к поверхности трубы, передающей тепло по направлению вниз, равно отношению соответствующих тепловых потоков («вверх» / «вниз»).

Рисунок 1.

Как отопить загородный дом

Средняя требуемая температура теплоносителя определяется из формулы:

t = tв + qвRnв + qвbRnpmp (1 + a),

Где: t – средняя температура теплоносителя,°С;

b – шаг труб (м);

Приведенное сопротивление теплопередаче слоев пола над трубой:

Как отопить загородный дом2 К/Вт);

Коэффициент теплоотдачи поверхности пола:

αв = 8,92 (tn tв)0,1 = 7,311qв0,09 (Вт/м К).

Термическое сопротивление слоев пола над трубой:

Как отопить загородный дом (м2 К/Вт).

Приведенное сопротивление теплопередаче слоев пола под трубой:

Как отопить загородный дом2 К/Вт).

Термическое сопротивление слоев пола под трубой:

Как отопить загородный дом2 К/Вт).

Отношение тепловых потоков «вверх/вниз»:

Как отопить загородный дом

Приведенное сопротивление теплопередаче стенок трубы (с учетом коэффициента теплоотдачи на внутренней поверхности трубы αвн, принимаемого 400 Вт м/К.

Как отопить загородный дом2 К/Вт).

Для решения обратной задачи (определение удельного теплового потока по заданной средней температуре теплоносителя) методом приближений решается относительно qв уравнение:

Как отопить загородный дом

Данная методика реализована в программном комплексе Valtec.prg (версии 1.0.0.1 и выше).

Табличный метод.

Является наиболее практичным с точки зрения проектировщика. По заданным конкретным данным на основании ранее изложенных методик составляются пользовательские расчетные таблицы. Ниже приводятся табличные примеры для металлопластиковых труб Valtec 16х2,0.

Тепловой поток от труб теплого пола (потери тепла в нижнем направлении не превышают 10 %) Покрытие пола – плитка керамическая (λ = 1,00 Вт/м °С) толщиной 12 мм. Коэффициент теплопроводности стяжки -0,93 Вт/м °С. Толщина стяжки – «в» от верха трубы.

Как отопить загородный дом

Покрытие пола – ковролин (λ = 0,07 Вт/м °С) толщиной 5 мм. Коэффициент теплопроводности стяжки -0,93 Вт/м °С. Толщина стяжки – «в» от верха трубы.

Как отопить загородный дом

Покрытие пола – паркет (λ = 0,2 Вт/м °С) толщиной 15 мм по фанере (λ = 0,18 Вт/м °С) толщиной 12 мм. Коэффициент теплопроводности стяжки – 0,93 Вт/м °С. Толщина стяжки – «в» от верха трубы.

Как отопить загородный дом

Приложение 5. Словарь терминов.

Котёл (теплогенератор).

Устройство для трансформации энергии, которое преобразовывает энергию углеводородного топлива или электрическую в тепловую и отдает ее теплоносителю.

Горелка.

Устройство для смешения воздуха с газообразным и дизельным топливом с целью подачи смеси и сжигания ее образованием устойчивого горения пламени (факела).

Конвективный теплообмен.

Перенос теплоты с поверхности конструкции омывающим её воздухом.

Лучистый теплообмен.

Перенос теплоты с поверхности конструкции за счет электромагнитного излучения.

Радиатор.

Прибор отопления, передающий тепло теплоносителя путем лучистого и конвективного теплообмена.

Конвектор.

Прибор отопления, передающий тепло преимущественно в виде конвективного теплообмена.

Расширительный бак.

Устройство, предназначенное для компенсации температурного расширения теплоносителя.

Сепаратор.

Устройство для удаления растворенного в теплоносителе кислорода при первоначальном прогреве системы.

Погодозависимый контроллер.

Устройство управления температурой отопительным контуром в зависимости от температуры наружного воздуха.

Циркуляционный насос.

Устройство, используемое для перемещения теплоносителя и преодоления сопротивления системы.

Предохранительный клапан.

Устройство, предназначенное для автоматической защиты оборудования от максимально допустимого рабочего давления в системе.

Кран Маевского.

Устройство для ручного удаления воздуха из системы (устанавливаются на радиаторах).

Автоматический воздухоотводчик.

Устройство для автоматического удаления воздуха из системы.

Смеситель.

Устройство, предназначенное для распределения потока теплоносителя по определенным направлениям или для смешивания потоков.

Обратный клапан.

Устройство для автоматического предотвращения обратного потока теплоносителя.

Запорная арматура.

Арматура, предназначенная для перекрытия потока рабочей среды.

Дымоход.

Канал или трубопровод прямоугольного или круглого сечения для создания тяги и отвода дымовых газов от котла и дымоотвода вверх в атмосферу.

Терморегулятор.

Вид трубопроводной арматуры, обеспечивающий автоматическое изменение количества протекающего через клапан терморегулятора теплоносителя в зависимости от заданной температуры воздуха.

Термоголовка.

Узел терморегулятора, включающий датчик и рукоятку установки температуры и обеспечивающий необходимое перекрытие проходного сечения клапана в автоматическом режиме.

Регулирующий клапан.

Терморегулятор без устройства автоматического регулирования температуры (имеет рукоятку для изменения вручную количества протекающего через него теплоносителя).

Теплоноситель.

Движущая среда, используемая для передачи тепла из котла к отопительным приборам.

Примечания.

1.

Словарь терминов, встречающихся в тексте приведен в приложении 1.